# -*- coding: utf-8 -*-
# Copyright (C) 2016-2023 PyThaiNLP Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Union
_tagger = None
_tagger_name = ""
[docs]def dependency_parsing(
    text: str, model: str = None, tag: str = "str", engine: str = "esupar"
) -> Union[List[List[str]], str]:
    """
    Dependency Parsing
    :param str text: text to do dependency parsing
    :param str model: model for using with engine \
        (for esupar and transformers_ud)
    :param str tag: output type (str or list)
    :param str engine: the name dependency parser
    :return: str (conllu) or List
    :rtype: Union[List[List[str]], str]
    **Options for engine**
        * *esupar* (default) - Tokenizer POS-tagger and Dependency-parser \
            with BERT/RoBERTa/DeBERTa model. `GitHub \
                <https://github.com/KoichiYasuoka/esupar>`_
        * *spacy_thai* - Tokenizer, POS-tagger, and dependency-parser \
            for Thai language, working on Universal Dependencies. \
            `GitHub <https://github.com/KoichiYasuoka/spacy-thai>`_
        * *transformers_ud* - TransformersUD \
            `GitHub <https://github.com/KoichiYasuoka/>`_
        * *ud_goeswith* - POS-tagging and dependency-parsing with \
            using `goeswith` for subwords
    **Options for model (esupar engine)**
        * *th* (default) - KoichiYasuoka/roberta-base-thai-spm-upos model \
            `Huggingface \
            <https://huggingface.co/KoichiYasuoka/roberta-base-thai-spm-upos>`_
        * *KoichiYasuoka/deberta-base-thai-upos* - DeBERTa(V2) model \
            pre-trained on Thai Wikipedia texts for POS-tagging and \
            dependency-parsing `Huggingface \
            <https://huggingface.co/KoichiYasuoka/deberta-base-thai-upos>`_
        * *KoichiYasuoka/roberta-base-thai-syllable-upos* - RoBERTa model \
            pre-trained on Thai Wikipedia texts for POS-tagging and \
            dependency-parsing. (syllable level) `Huggingface \
            <https://huggingface.co/KoichiYasuoka/roberta-base-thai-syllable-upos>`_
        * *KoichiYasuoka/roberta-base-thai-char-upos* - RoBERTa model \
            pre-trained on Thai Wikipedia texts for POS-tagging \
            and dependency-parsing. (char level) `Huggingface \
            <https://huggingface.co/KoichiYasuoka/roberta-base-thai-char-upos>`_
    If you want to train model for esupar, you can read \
    `Huggingface <https://github.com/KoichiYasuoka/esupar>`_
    **Options for model (transformers_ud engine)**
        * *KoichiYasuoka/deberta-base-thai-ud-head* (default) - \
            DeBERTa(V2) model pretrained on Thai Wikipedia texts \
            for dependency-parsing (head-detection on Universal \
            Dependencies) as question-answering, derived from \
            deberta-base-thai. \
            trained by th_blackboard.conll. `Huggingface \
            <https://huggingface.co/KoichiYasuoka/deberta-base-thai-ud-head>`_
        * *KoichiYasuoka/roberta-base-thai-spm-ud-head* - \
            roberta model pretrained on Thai Wikipedia texts \
            for dependency-parsing. `Huggingface \
            <https://huggingface.co/KoichiYasuoka/roberta-base-thai-spm-ud-head>`_
    **Options for model (ud_goeswith engine)**
        * *KoichiYasuoka/deberta-base-thai-ud-goeswith* (default) - \
            This is a DeBERTa(V2) model pre-trained on Thai Wikipedia \
            texts for POS-tagging and dependency-parsing (using goeswith for subwords) \
            `Huggingface <https://huggingface.co/KoichiYasuoka/deberta-base-thai-ud-goeswith>`_
    :Example:
    ::
        from pythainlp.parse import dependency_parsing
        print(dependency_parsing("ผมเป็นคนดี", engine="esupar"))
        # output:
        # 1       ผม      _       PRON    _       _       3       nsubj   _       SpaceAfter=No
        # 2       เป็น     _       VERB    _       _       3       cop     _       SpaceAfter=No
        # 3       คน      _       NOUN    _       _       0       root    _       SpaceAfter=No
        # 4       ดี       _       VERB    _       _       3       acl     _       SpaceAfter=No
        print(dependency_parsing("ผมเป็นคนดี", engine="spacy_thai"))
        # output:
        # 1       ผม              PRON    PPRS    _       2       nsubj   _       SpaceAfter=No
        # 2       เป็น             VERB    VSTA    _       0       ROOT    _       SpaceAfter=No
        # 3       คนดี             NOUN    NCMN    _       2       obj     _       SpaceAfter=No
    """
    global _tagger, _tagger_name
    if _tagger_name != engine:
        if engine == "esupar":
            from pythainlp.parse.esupar_engine import Parse
            _tagger = Parse(model=model)
        elif engine == "transformers_ud":
            from pythainlp.parse.transformers_ud import Parse
            _tagger = Parse(model=model)
        elif engine == "spacy_thai":
            from pythainlp.parse.spacy_thai_engine import Parse
            _tagger = Parse()
        elif engine == "ud_goeswith":
            from pythainlp.parse.ud_goeswith import Parse
            _tagger = Parse(model=model)
        else:
            raise NotImplementedError("The engine doesn't support.")
    _tagger_name = engine
    return _tagger(text, tag=tag)