Source code for pythainlp.corpus.wordnet

# -*- coding: utf-8 -*-
# Copyright (C) 2016-2023 PyThaiNLP Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
NLTK WordNet wrapper

API here is exactly the same as NLTK WordNet API,
except that lang (language) argument will be "tha" (Thai) by default.

For more on usage, see NLTK Howto:
https://www.nltk.org/howto/wordnet.html
"""
import nltk

try:
    nltk.data.find("corpora/omw")
except LookupError:
    nltk.download("omw")

try:
    nltk.data.find("corpora/wordnet")
except LookupError:
    nltk.download("wordnet")

from nltk.corpus import wordnet


[docs]def synsets(word: str, pos: str = None, lang: str = "tha"): """ This function return the synonym sets for all lemmas given the word with an optional argument to constrain the part of speech of the word. :param str word: word to find its synsets :param str pos: the part of speech constraint (i.e. *n* for Noun, *v* for Verb, *a* for Adjective, *s* for Adjective satellites, and *r* for Adverb) :param str lang: abbreviation of language (i.e. *eng*, *tha*). By default, it is *tha* :return: :class:`Synset` for all lemmas for the word constrained with the argument *pos*. :rtype: list[:class:`Synset`] :Example: >>> from pythainlp.corpus.wordnet import synsets >>> >>> synsets("ทำงาน") [Synset('function.v.01'), Synset('work.v.02'), Synset('work.v.01'), Synset('work.v.08')] >>> >>> synsets("บ้าน", lang="tha")) [Synset('duplex_house.n.01'), Synset('dwelling.n.01'), Synset('house.n.01'), Synset('family.n.01'), Synset('home.n.03'), Synset('base.n.14'), Synset('home.n.01'), Synset('houseful.n.01'), Synset('home.n.07')] When specifying the part of speech constrain. For example, the word "แรง" cound be interpreted as force (n.) or hard (adj.). >>> from pythainlp.corpus.wordnet import synsets >>> # By default, accept all part of speech >>> synsets("แรง", lang="tha") >>> >>> # only Noun >>> synsets("แรง", pos="n", lang="tha") [Synset('force.n.03'), Synset('force.n.02')] >>> >>> # only Adjective >>> synsets("แรง", pos="a", lang="tha") [Synset('hard.s.10'), Synset('strong.s.02')] """ return wordnet.synsets(lemma=word, pos=pos, lang=lang)
[docs]def synset(name_synsets): """ This function return the synonym set (synset) given the name of synset (i.e. 'dog.n.01', 'chase.v.01'). :param str name_synsets: name of the sysset :return: :class:`Synset` of the given name :rtype: :class:`Synset` :Example: >>> from pythainlp.corpus.wordnet import synset >>> >>> difficult = synset('difficult.a.01') >>> difficult Synset('difficult.a.01') >>> >>> difficult.definition() 'not easy; requiring great physical or mental effort to accomplish or comprehend or endure' """ return wordnet.synset(name_synsets)
[docs]def all_lemma_names(pos: str = None, lang: str = "tha"): """ This function returns all lemma names for all synsets for the given part of speech tag and language. If part of speech tag is not specified, all synsets for all part of speech will be used. :param str pos: the part of speech constraint (i.e. *n* for Noun, *v* for Verb, *a* for Adjective, *s* for Adjective satellites, and *r* for Adverb). By default, *pos* is **None**. :param str lang: abbreviation of language (i.e. *eng*, *tha*). By default, it is *tha*. :return: :class:`Synset` of lemmas names given the pos and language :rtype: list[:class:`Synset`] :Example: >>> from pythainlp.corpus.wordnet import all_lemma_names >>> >>> all_lemma_names() ['อเมริโก_เวสปุชชี', 'เมืองชีย์เอนเน', 'การรับเลี้ยงบุตรบุญธรรม', 'ผู้กัด', 'ตกแต่งเรือด้วยธง', 'จิโอวานนิ_เวอร์จินิโอ',...] >>> >>> len(all_lemma_names()) 80508 >>> >>> all_lemma_names(pos="a") ['ซึ่งไม่มีแอลกอฮอล์', 'ซึ่งตรงไปตรงมา', 'ที่เส้นศูนย์สูตร', 'ทางจิตใจ',...] >>> >>> len(all_lemma_names(pos="a")) 5277 """ return wordnet.all_lemma_names(pos=pos, lang=lang)
[docs]def all_synsets(pos: str = None): """ This function iterates over all synsets constrained by given part of speech tag. :param str pos: part of speech tag :return: list of synsets constrained by given part of speech tag. :rtype: Iterable[:class:`Synset`] :Example: >>> from pythainlp.corpus.wordnet import all_synsets >>> >>> generator = all_synsets(pos="n") >>> next(generator) Synset('entity.n.01') >>> next(generator) Synset('physical_entity.n.01') >>> next(generator) Synset('abstraction.n.06') >>> >>> generator = all_synsets() >>> next(generator) Synset('able.a.01') >>> next(generator) Synset('unable.a.01') """ return wordnet.all_synsets(pos=pos)
[docs]def langs(): """ This function return a set of ISO-639 language codes. :return: ISO-639 language codes :rtype: list[str] :Example: >>> from pythainlp.corpus.wordnet import langs >>> langs() ['eng', 'als', 'arb', 'bul', 'cat', 'cmn', 'dan', 'ell', 'eus', 'fas', 'fin', 'fra', 'glg', 'heb', 'hrv', 'ind', 'ita', 'jpn', 'nld', 'nno', 'nob', 'pol', 'por', 'qcn', 'slv', 'spa', 'swe', 'tha', 'zsm'] """ return wordnet.langs()
[docs]def lemmas(word: str, pos: str = None, lang: str = "tha"): """ This function returns all lemmas given the word with an optional argument to constrain the part of speech of the word. :param str word: word to find its lammas :param str pos: the part of speech constraint (i.e. *n* for Noun, *v* for Verb, *a* for Adjective, *s* for Adjective satellites, and *r* for Adverb) :param str lang: abbreviation of language (i.e. *eng*, *tha*). By default, it is *tha*. :return: :class:`Synset` for all lemmas for the word constraine with the argument *pos*. :rtype: list[:class:`Lemma`] :Example: >>> from pythainlp.corpus.wordnet import lemmas >>> >>> lemmas("โปรด") [Lemma('like.v.03.โปรด'), Lemma('like.v.02.โปรด')] >>> print(lemmas("พระเจ้า")) [Lemma('god.n.01.พระเจ้า'), Lemma('godhead.n.01.พระเจ้า'), Lemma('father.n.06.พระเจ้า'), Lemma('god.n.03.พระเจ้า')] When specify the part of speech tag. >>> from pythainlp.corpus.wordnet import lemmas >>> >>> lemmas("ม้วน") [Lemma('roll.v.18.ม้วน'), Lemma('roll.v.17.ม้วน'), Lemma('roll.v.08.ม้วน'), Lemma('curl.v.01.ม้วน'), Lemma('roll_up.v.01.ม้วน'), Lemma('wind.v.03.ม้วน'), Lemma('roll.n.11.ม้วน')] >>> >>> # only lammas with Noun as the part of speech >>> lemmas("ม้วน", pos="n") [Lemma('roll.n.11.ม้วน')] """ return wordnet.lemmas(word, pos=pos, lang=lang)
[docs]def lemma(name_synsets): """ This function return lemma object given the name. .. note:: Support only English language (*eng*). :param str name_synsets: name of the synset :return: lemma object with the given name :rtype: :class:`Lemma` :Example: >>> from pythainlp.corpus.wordnet import lemma >>> >>> lemma('practice.v.01.exercise') Lemma('practice.v.01.exercise') >>> >>> lemma('drill.v.03.exercise') Lemma('drill.v.03.exercise') >>> >>> lemma('exercise.n.01.exercise') Lemma('exercise.n.01.exercise') """ return wordnet.lemma(name_synsets)
[docs]def lemma_from_key(key): """ This function returns lemma object given the lemma key. This is similar to :func:`lemma` but it needs to supply the key of lemma instead of the name. .. note:: Support only English language (*eng*). :param str key: key of the lemma object :return: lemma object with the given key :rtype: :class:`Lemma` :Example: >>> from pythainlp.corpus.wordnet import lemma, lemma_from_key >>> >>> practice = lemma('practice.v.01.exercise') >>> practice.key() exercise%2:41:00:: >>> lemma_from_key(practice.key()) Lemma('practice.v.01.exercise') """ return wordnet.lemma_from_key(key)
[docs]def path_similarity(synsets1, synsets2): """ This function returns similarity between two synsets based on the shortest path distance from the equation as follows. .. math:: path\\_similarity = {1 \\over shortest\\_path\\_distance(synsets1, synsets2) + 1} The shortest path distance is calculated by the connection through the is-a (hypernym/hyponym) taxonomy. The score is in the ranage 0 to 1. Path similarity of 1 indicates identicality. :param `Synset` synsets1: first synset supplied to measures the path similarity :param `Synset` synsets2: second synset supplied to measures the path similarity :return: path similarity between two synsets :rtype: float :Example: >>> from pythainlp.corpus.wordnet import path_similarity, synset >>> >>> entity = synset('entity.n.01') >>> obj = synset('object.n.01') >>> cat = synset('cat.n.01') >>> >>> path_similarity(entity, obj) 0.3333333333333333 >>> path_similarity(entity, cat) 0.07142857142857142 >>> path_similarity(obj, cat) 0.08333333333333333 """ return wordnet.path_similarity(synsets1, synsets2)
[docs]def lch_similarity(synsets1, synsets2): """ This function returns Leacock Chodorow similarity (LCH) between two synsets, based on the shortest path distance and the maximum depth of the taxonomy. The equation to calculate LCH similarity is shown below: .. math:: lch\\_similarity = {-log(shortest\\_path\\_distance(synsets1, synsets2) \\over 2 * taxonomy\\_depth} :param `Synset` synsets1: first synset supplied to measures the LCH similarity :param `Synset` synsets2: second synset supplied to measures the LCH similarity :return: LCH similarity between two synsets :rtype: float :Example: >>> from pythainlp.corpus.wordnet import lch_similarity, synset >>> >>> entity = synset('entity.n.01') >>> obj = synset('object.n.01') >>> cat = synset('cat.n.01') >>> >>> lch_similarity(entity, obj) 2.538973871058276 >>> lch_similarity(entity, cat) 0.9985288301111273 >>> lch_similarity(obj, cat) 1.1526795099383855 """ return wordnet.lch_similarity(synsets1, synsets2)
[docs]def wup_similarity(synsets1, synsets2): """ This function returns Wu-Palmer similarity (WUP) between two synsets, based on the depth of the two senses in the taxonomy and their Least Common Subsumer (most specific ancestor node). :param `Synset` synsets1: first synset supplied to measures the WUP similarity :param `Synset` synsets2: second synset supplied to measures the WUP similarity :return: WUP similarity between two synsets :rtype: float :Example: >>> from pythainlp.corpus.wordnet import wup_similarity, synset >>> >>> entity = synset('entity.n.01') >>> obj = synset('object.n.01') >>> cat = synset('cat.n.01') >>> >>> wup_similarity(entity, obj) 0.5 >>> wup_similarity(entity, cat) 0.13333333333333333 >>> wup_similarity(obj, cat) 0.35294117647058826 """ return wordnet.wup_similarity(synsets1, synsets2)
[docs]def morphy(form, pos: str = None): """ This function finds a possible base form for the given form, with the given part of speech. :param str form: the form to finds the base form :param str pos: part of speech tag of words to be searched :return: base form of the given form :rtype: str :Example: >>> from pythainlp.corpus.wordnet import morphy >>> >>> morphy("dogs") 'dogs' >>> >>> morphy("thieves") 'thief' >>> >>> morphy("mixed") 'mix' >>> >>> morphy("calculated") 'calculate' """ return wordnet.morphy(form, pos=None)
[docs]def custom_lemmas(tab_file, lang: str): """ This function reads a custom tab file (see: http://compling.hss.ntu.edu.sg/omw/) containing mappings of lemmas in the given language. :param tab_file: Tab file as a file or file-like object :param str lang: abbreviation of language (i.e. *eng*, *tha*). """ return wordnet.custom_lemmas(tab_file, lang)