Source code for pythainlp.wangchanberta.core

from typing import Dict, List, Tuple, Union
import re
from transformers import (
    CamembertTokenizer,
    AutoTokenizer,
    pipeline,
)

_model_name = "wangchanberta-base-att-spm-uncased"
_tokenizer = CamembertTokenizer.from_pretrained(
        f'airesearch/{_model_name}',
        revision='main')
if _model_name == "wangchanberta-base-att-spm-uncased":
    _tokenizer.additional_special_tokens = ['<s>NOTUSED', '</s>NOTUSED', '<_>']


[docs]class ThaiNameTagger: def __init__( self, dataset_name: str = "thainer", grouped_entities: bool = True ): """ This function tags named-entitiy from text in IOB format. Powered by wangchanberta from VISTEC-depa\ AI Research Institute of Thailand :param str dataset_name: * *thainer* - ThaiNER dataset * *lst20* - LST20 Corpus :param bool grouped_entities: grouped entities """ self.dataset_name = dataset_name self.grouped_entities = grouped_entities self.classify_tokens = pipeline( task='ner', tokenizer=_tokenizer, model=f'airesearch/{_model_name}', revision=f'finetuned@{self.dataset_name}-ner', ignore_labels=[], grouped_entities=self.grouped_entities) def _IOB(self, tag): if tag != "O": return "B-"+tag return "O" def _clear_tag(self, tag): return tag.replace('B-', '').replace('I-', '')
[docs] def get_ner( self, text: str, tag: bool = False ) -> Union[List[Tuple[str, str]], str]: """ This function tags named-entitiy from text in IOB format. Powered by wangchanberta from VISTEC-depa\ AI Research Institute of Thailand :param str text: text in Thai to be tagged :param bool tag: output like html tag. :return: a list of tuple associated with tokenized word group, NER tag, \ and output like html tag (if the parameter `tag` is \ specified as `True`). \ Otherwise, return a list of tuple associated with tokenized \ word and NER tag :rtype: Union[list[tuple[str, str]]], str """ text = re.sub(" ", "<_>", text) self.json_ner = self.classify_tokens(text) self.output = "" if self.grouped_entities and self.dataset_name == "thainer": self.sent_ner = [ ( i['word'].replace("<_>", " ").replace('▁', ''), self._IOB(i['entity_group']) ) for i in self.json_ner ] elif self.dataset_name == "thainer": self.sent_ner = [ ( i['word'].replace("<_>", " ").replace('▁', ''), i['entity'] ) for i in self.json_ner if i['word'] != '▁' ] elif self.grouped_entities and self.dataset_name == "lst20": self.sent_ner = [ ( i['word'].replace("<_>", " ").replace('▁', ''), i['entity_group'].replace('_', '-').replace('E-', 'I-') ) for i in self.json_ner ] else: self.sent_ner = [ ( i['word'].replace("<_>", " ").replace('▁', ''), i['entity'].replace('_', '-').replace('E-', 'I-') ) for i in self.json_ner ] if self.sent_ner[0][0] == '' and len(self.sent_ner) > 1: self.sent_ner = self.sent_ner[1:] for idx, (word, ner) in enumerate(self.sent_ner): if idx > 0 and ner.startswith("B-"): if ( self._clear_tag(ner) == self._clear_tag( self.sent_ner[idx-1][1] ) ): self.sent_ner[idx] = (word, ner.replace('B-', 'I-')) if tag: temp = "" sent = "" for idx, (word, ner) in enumerate(self.sent_ner): if ner.startswith("B-") and temp != "": sent += "</" + temp + ">" temp = ner[2:] sent += "<" + temp + ">" elif ner.startswith("B-"): temp = ner[2:] sent += "<" + temp + ">" elif ner == "O" and temp != "": sent += "</" + temp + ">" temp = "" sent += word if idx == len(self.sent_ner) - 1 and temp != "": sent += "</" + temp + ">" return sent else: return self.sent_ner
[docs]def segment(text: str) -> List[str]: """ Subword tokenize. SentencePiece from wangchanberta model. :param str text: text to be tokenized :return: list of subwords :rtype: list[str] """ if not text or not isinstance(text, str): return [] return _tokenizer.tokenize(text)