Source code for pythainlp.corpus.core

# -*- coding: utf-8 -*-
"""
Corpus related functions.
"""

import hashlib
import os
from typing import Union
from urllib.request import urlopen

import requests
from pythainlp.corpus import corpus_db_path, corpus_db_url, corpus_path
from pythainlp.tools import get_full_data_path
from requests.exceptions import HTTPError
from tinydb import Query, TinyDB


[docs]def get_corpus_db(url: str) -> requests.Response: """ Get corpus catalog from server. :param str url: URL corpus catalog """ corpus_db = None try: corpus_db = requests.get(url) except HTTPError as http_err: print(f"HTTP error occurred: {http_err}") except Exception as err: print(f"Non-HTTP error occurred: {err}") return corpus_db
[docs]def get_corpus_db_detail(name: str, version: str = None) -> dict: """ Get details about a corpus, using information from local catalog. :param str name: name corpus :return: details about a corpus :rtype: dict """ local_db = TinyDB(corpus_db_path()) query = Query() if version is None: res = local_db.search(query.name == name) else: res = local_db.search((query.name == name) & (query.version == version)) local_db.close() if res: return res[0] return dict()
[docs]def get_corpus(filename: str, as_is: bool = False) -> Union[frozenset, list]: """ Read corpus data from file and return a frozenset or a list. Each line in the file will be a member of the set or the list. By default, a frozenset will be return, with whitespaces stripped, and empty values and duplicates removed. If as_is is True, a list will be return, with no modifications in member values and their orders. (Please see the filename from `this file <https://github.com/PyThaiNLP/pythainlp-corpus/blob/master/db.json>`_ :param str filename: filename of the corpus to be read :return: :class:`frozenset` or :class:`list` consists of lines in the file :rtype: :class:`frozenset` or :class:`list` :Example: :: from pythainlp.corpus import get_corpus get_corpus('negations_th.txt') # output: # frozenset({'แต่', 'ไม่'}) get_corpus('ttc_freq.txt') # output: # frozenset({'โดยนัยนี้\\t1', # 'ตัวบท\\t10', # 'หยิบยื่น\\t3', # ...}) """ path = os.path.join(corpus_path(), filename) lines = [] with open(path, "r", encoding="utf-8-sig") as fh: lines = fh.read().splitlines() if as_is: return lines lines = [line.strip() for line in lines] return frozenset(filter(None, lines))
def _update_all(): print("Update Corpus...") with TinyDB(corpus_db_path()) as local_db: item_all = local_db.all() query = Query() for item in item_all: name = item["name"] if "file_name" in item.keys(): local_db.update( {"filename": item["file_name"]}, query.name == name ) elif "file" in item.keys(): local_db.update({"filename": item["file"]}, query.name == name) local_db.close()
[docs]def get_corpus_path(name: str, version : str = None) -> Union[str, None]: """ Get corpus path. :param str name: corpus name :return: path to the corpus or **None** of the corpus doesn't \ exist in the device :rtype: str :Example: If the corpus already exists:: from pythainlp.corpus import get_corpus_path print(get_corpus_path('ttc')) # output: /root/pythainlp-data/ttc_freq.txt If the corpus has not been downloaded yet:: from pythainlp.corpus import download, get_corpus_path print(get_corpus_path('wiki_lm_lstm')) # output: None download('wiki_lm_lstm') # output: # Download: wiki_lm_lstm # wiki_lm_lstm 0.32 # thwiki_lm.pth?dl=1: 1.05GB [00:25, 41.5MB/s] # /root/pythainlp-data/thwiki_model_lstm.pth print(get_corpus_path('wiki_lm_lstm')) # output: /root/pythainlp-data/thwiki_model_lstm.pth """ # Customize your the corpus path then close the line after lines 164 through 190. _CUSTOMIZE = { # "the corpus name":"path" } if name in list(_CUSTOMIZE.keys()): return _CUSTOMIZE[name] # check if the corpus is in local catalog, download if not corpus_db_detail = get_corpus_db_detail(name) if ( corpus_db_detail.get("file_name") is not None and corpus_db_detail.get("filename") is None ): _update_all() elif ( corpus_db_detail.get("file") is not None and corpus_db_detail.get("filename") is None ): _update_all() if not corpus_db_detail or not corpus_db_detail.get("filename"): download(name, version = version) corpus_db_detail = get_corpus_db_detail(name) if corpus_db_detail and corpus_db_detail.get("filename"): # corpus is in the local catalog, get full path to the file path = get_full_data_path(corpus_db_detail.get("filename")) # check if the corpus file actually exists, download if not if not os.path.exists(path): download(name) if os.path.exists(path): return path return None
def _download(url: str, dst: str) -> int: """ Download helper. @param: url to download file @param: dst place to put the file """ _CHUNK_SIZE = 64 * 1024 # 64 KiB file_size = int(urlopen(url).info().get("Content-Length", -1)) r = requests.get(url, stream=True) with open(get_full_data_path(dst), "wb") as f: pbar = None try: from tqdm import tqdm pbar = tqdm(total=int(r.headers["Content-Length"])) except ImportError: pbar = None for chunk in r.iter_content(chunk_size=_CHUNK_SIZE): if chunk: f.write(chunk) if pbar: pbar.update(len(chunk)) if pbar: pbar.close() else: print("Done.") return file_size def _check_hash(dst: str, md5: str) -> None: """ Check hash helper. @param: dst place to put the file @param: md5 place to hash the file (MD5) """ if md5 and md5 != "-": with open(get_full_data_path(dst), "rb") as f: content = f.read() file_md5 = hashlib.md5(content).hexdigest() if md5 != file_md5: raise Exception("Hash does not match expected.")
[docs]def download( name: str, force: bool = False, url: str = None, version: str = None ) -> bool: """ Download corpus. The available corpus names can be seen in this file: https://github.com/PyThaiNLP/pythainlp-corpus/blob/master/db.json :param str name: corpus name :param bool force: force download :param str url: URL of the corpus catalog :param str version: Version of the corpus :return: **True** if the corpus is found and succesfully downloaded. Otherwise, it returns **False**. :rtype: bool :Example: :: from pythainlp.corpus import download download('wiki_lm_lstm', force=True) # output: # Corpus: wiki_lm_lstm # - Downloading: wiki_lm_lstm 0.1 # thwiki_lm.pth: 26%|██▌ | 114k/434k [00:00<00:00, 690kB/s] By default, downloaded corpus and model will be saved in ``$HOME/pythainlp-data/`` (e.g. ``/Users/bact/pythainlp-data/wiki_lm_lstm.pth``). """ if not url: url = corpus_db_url() corpus_db = get_corpus_db(url) if not corpus_db: print(f"Cannot download corpus catalog from: {url}") return False corpus_db = corpus_db.json() # check if corpus is available if name in list(corpus_db.keys()): local_db = TinyDB(corpus_db_path()) query = Query() corpus = corpus_db[name.lower()] print("Corpus:", name) if version is None: version = corpus["latest_version"] corpus_versions = corpus["versions"][version] file_name = corpus_versions["filename"] found = local_db.search( (query.name == name) & (query.version == version) ) # If not found in local, download if force or not found: print(f"- Downloading: {name} {version}") _download( corpus_versions["download_url"], file_name, ) _check_hash( file_name, corpus_versions["md5"], ) if found: local_db.update({"version": version}, query.name == name) else: local_db.insert( {"name": name, "version": version, "filename": file_name} ) else: if local_db.search( query.name == name and query.version == version ): # Already has the same version print("- Already up to date.") else: # Has the corpus but different version current_ver = local_db.search(query.name == name)[0]["version"] print(f"- Existing version: {current_ver}") print(f"- New version available: {version}") print("- Use download(data_name, force=True) to update") local_db.close() return True print("Corpus not found:", name) return False
[docs]def remove(name: str) -> bool: """ Remove corpus :param str name: corpus name :return: **True** if the corpus is found and succesfully removed. Otherwise, it returns **False**. :rtype: bool :Example: :: from pythainlp.corpus import remove, get_corpus_path, get_corpus print(remove('ttc')) # output: True print(get_corpus_path('ttc')) # output: None get_corpus('ttc') # output: # FileNotFoundError: [Errno 2] No such file or directory: # '/usr/local/lib/python3.6/dist-packages/pythainlp/corpus/ttc' """ db = TinyDB(corpus_db_path()) query = Query() data = db.search(query.name == name) if data: path = get_corpus_path(name) os.remove(path) db.remove(query.name == name) db.close() return True db.close() return False