# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: 2016-2025 PyThaiNLP Project
# SPDX-FileType: SOURCE
# SPDX-License-Identifier: Apache-2.0
from typing import List, Tuple, Union
from pythainlp.corpus import thai_wsd_dict
from pythainlp.tokenize import Tokenizer
from pythainlp.util.trie import Trie
_wsd_dict = thai_wsd_dict()
_mean_all = {}
for i, j in zip(_wsd_dict["word"], _wsd_dict["meaning"]):
_mean_all[i] = j
_all_word = set(list(_mean_all.keys()))
_TRIE = Trie(list(_all_word))
_word_cut = Tokenizer(custom_dict=_TRIE)
_MODEL = None
class _SentenceTransformersModel:
def __init__(
self,
model: str = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
device: str = "cpu",
):
from sentence_transformers import SentenceTransformer
self.device = device
self.model_name = model
self.model = SentenceTransformer(self.model_name, device=self.device)
def change_device(self, device: str):
from sentence_transformers import SentenceTransformer
self.device = device
self.model = SentenceTransformer(self.model_name, device=self.device)
def get_score(self, sentences1: str, sentences2: str) -> float:
from sentence_transformers import util
embedding_1 = self.model.encode(sentences1, convert_to_tensor=True)
embedding_2 = self.model.encode(sentences2, convert_to_tensor=True)
return 1 - util.pytorch_cos_sim(embedding_1, embedding_2)[0][0].item()
[docs]
def get_sense(
sentence: str,
word: str,
device: str = "cpu",
custom_dict: dict = dict(),
custom_tokenizer: Tokenizer = _word_cut,
) -> List[Tuple[str, float]]:
"""
Get word sense from the sentence.
This function will get definition and distance from context in sentence.
:param str sentence: Thai sentence
:param str word: Thai word
:param str device: device for running model on.
:param dict custom_dict: Thai dictionary {"word":["definition",..]}
:param Tokenizer custom_tokenizer: Tokenizer used to tokenize words in \
sentence.
:return: a list of definitions and distances (1 - cos_sim) or \
an empty list (if word is not in the dictionary)
:rtype: List[Tuple[str, float]]
We get the ideas from `Context-Aware Semantic Similarity Measurement for \
Unsupervised Word Sense Disambiguation \
<https://arxiv.org/abs/2305.03520>`_ to build get_sense function.
Use Thai dictionary from wiktionary.
See `thai_dict <https://pythainlp.org/pythainlp-corpus/thai_dict.html>`_.
Use sentence transformers model from \
`sentence-transformers/paraphrase-multilingual-mpnet-base-v2 \
<https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2>`_ \
for unsupervised word sense disambiguation.
:Example:
::
from pythainlp.wsd import get_sense
print(get_sense("เขากำลังอบขนมคุกกี้","คุกกี้"))
# output:
# [('โปรแกรมคอมพิวเตอร์ใช้ในทางอินเทอร์เน็ตสำหรับเก็บข้อมูลของผู้ใช้งาน',
# 0.0974416732788086),
# ('ชื่อขนมชนิดหนึ่งจำพวกขนมเค้ก แต่ทำเป็นชิ้นเล็ก ๆ แบน ๆ แล้วอบให้กรอบ',
# 0.09319090843200684)]
print(get_sense("เว็บนี้ต้องการคุกกี้ในการทำงาน","คุกกี้"))
# output:
# [('โปรแกรมคอมพิวเตอร์ใช้ในทางอินเทอร์เน็ตสำหรับเก็บข้อมูลของผู้ใช้งาน',
# 0.1005704402923584),
# ('ชื่อขนมชนิดหนึ่งจำพวกขนมเค้ก แต่ทำเป็นชิ้นเล็ก ๆ แบน ๆ แล้วอบให้กรอบ',
# 0.12473666667938232)]
"""
global _MODEL
if not custom_dict:
custom_dict = _mean_all
w = custom_tokenizer.word_tokenize(sentence)
if word not in set(custom_dict.keys()) or word not in sentence:
return []
if not _MODEL:
_MODEL = _SentenceTransformersModel(device=device)
if _MODEL.device != device:
_MODEL.change_device(device=device)
temp_mean = custom_dict[word]
temp = []
for i in temp_mean:
_temp_2 = []
for j in w:
if j == word:
j = (
word
+ f" ({word} ความหมาย '"
+ i.replace("(", "").replace(")", "")
+ "') "
)
_temp_2.append(j)
temp.append((i, _MODEL.get_score(sentence, "".join(_temp_2))))
return temp