Source code for pythainlp.wsd.core

# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: 2016-2024 PyThaiNLP Project
# SPDX-License-Identifier: Apache-2.0
from typing import List, Tuple, Union

from pythainlp.corpus import thai_wsd_dict
from pythainlp.tokenize import Tokenizer
from pythainlp.util.trie import Trie

_wsd_dict = thai_wsd_dict()
_mean_all = {}

for i, j in zip(_wsd_dict["word"], _wsd_dict["meaning"]):
    _mean_all[i] = j

_all_word = set(list(_mean_all.keys()))
_TRIE = Trie(list(_all_word))
_word_cut = Tokenizer(custom_dict=_TRIE)

_MODEL = None


class _SentenceTransformersModel:
    def __init__(
        self,
        model: str = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
        device: str = "cpu",
    ):
        from sentence_transformers import SentenceTransformer

        self.device = device
        self.model_name = model
        self.model = SentenceTransformer(self.model_name, device=self.device)

    def change_device(self, device: str):
        from sentence_transformers import SentenceTransformer

        self.device = device
        self.model = SentenceTransformer(self.model_name, device=self.device)

    def get_score(self, sentences1: str, sentences2: str) -> float:
        from sentence_transformers import util

        embedding_1 = self.model.encode(sentences1, convert_to_tensor=True)
        embedding_2 = self.model.encode(sentences2, convert_to_tensor=True)
        return 1 - util.pytorch_cos_sim(embedding_1, embedding_2)[0][0].item()


[docs] def get_sense( sentence: str, word: str, device: str = "cpu", custom_dict: dict = dict(), custom_tokenizer: Tokenizer = _word_cut, ) -> List[Tuple[str, float]]: """ Get word sense from the sentence. This function will get definition and distance from context in sentence. :param str sentence: Thai sentence :param str word: Thai word :param str device: device for running model on. :param dict custom_dict: Thai dictionary {"word":["definition",..]} :param Tokenizer custom_tokenizer: Tokenizer used to tokenize words in \ sentence. :return: a list of definitions and distances (1 - cos_sim) or \ an empty list (if word is not in the dictionary) :rtype: List[Tuple[str, float]] We get the ideas from `Context-Aware Semantic Similarity Measurement for \ Unsupervised Word Sense Disambiguation \ <https://arxiv.org/abs/2305.03520>`_ to build get_sense function. Use Thai dictionary from wiktionary. See `thai_dict <https://pythainlp.org/pythainlp-corpus/thai_dict.html>`_. Use sentence transformers model from \ `sentence-transformers/paraphrase-multilingual-mpnet-base-v2 \ <https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2>`_ \ for unsupervised word sense disambiguation. :Example: :: from pythainlp.wsd import get_sense print(get_sense("เขากำลังอบขนมคุกกี้","คุกกี้")) # output: # [('โปรแกรมคอมพิวเตอร์ใช้ในทางอินเทอร์เน็ตสำหรับเก็บข้อมูลของผู้ใช้งาน', # 0.0974416732788086), # ('ชื่อขนมชนิดหนึ่งจำพวกขนมเค้ก แต่ทำเป็นชิ้นเล็ก ๆ แบน ๆ แล้วอบให้กรอบ', # 0.09319090843200684)] print(get_sense("เว็บนี้ต้องการคุกกี้ในการทำงาน","คุกกี้")) # output: # [('โปรแกรมคอมพิวเตอร์ใช้ในทางอินเทอร์เน็ตสำหรับเก็บข้อมูลของผู้ใช้งาน', # 0.1005704402923584), # ('ชื่อขนมชนิดหนึ่งจำพวกขนมเค้ก แต่ทำเป็นชิ้นเล็ก ๆ แบน ๆ แล้วอบให้กรอบ', # 0.12473666667938232)] """ global _MODEL if not custom_dict: custom_dict = _mean_all w = custom_tokenizer.word_tokenize(sentence) if word not in set(custom_dict.keys()) or word not in sentence: return [] if not _MODEL: _MODEL = _SentenceTransformersModel(device=device) if _MODEL.device != device: _MODEL.change_device(device=device) temp_mean = custom_dict[word] temp = [] for i in temp_mean: _temp_2 = [] for j in w: if j == word: j = ( word + f" ({word} ความหมาย '" + i.replace("(", "").replace(")", "") + "') " ) _temp_2.append(j) temp.append((i, _MODEL.get_score(sentence, "".join(_temp_2)))) return temp