# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: 2016-2025 PyThaiNLP Project
# SPDX-FileType: SOURCE
# SPDX-License-Identifier: Apache-2.0
"""
Trie data structure.
Designed to be used for tokenizer's dictionary, but can be for other purposes.
"""
from typing import Iterable, Iterator, List, Union
[docs]
class Trie(Iterable[str]):
[docs]
class Node:
__slots__ = "end", "children"
[docs]
def __init__(self):
self.end = False
self.children = {}
[docs]
def __init__(self, words: Iterable[str]):
self.words = set(words)
self.root = Trie.Node()
for word in words:
self.add(word)
[docs]
def add(self, word: str) -> None:
"""
Add a word to the trie.
Spaces in front of and following the word will be removed.
:param str text: a word
"""
word = word.strip()
self.words.add(word)
cur = self.root
for ch in word:
child = cur.children.get(ch)
if not child:
child = Trie.Node()
cur.children[ch] = child
cur = child
cur.end = True
[docs]
def remove(self, word: str) -> None:
"""
Remove a word from the trie.
If the word is not found, do nothing.
:param str text: a word
"""
# remove from set first
if word not in self.words:
return
self.words.remove(word)
# then remove from nodes
parent = self.root
data = [] # track path to leaf
for ch in word:
child = parent.children[ch]
data.append((parent, child, ch))
parent = child
# remove the last one
child.end = False
# prune up the tree
for parent, child, ch in reversed(data):
if child.end or child.children:
break
del parent.children[ch] # remove from parent dict
[docs]
def prefixes(self, text: str) -> List[str]:
"""
List all possible words from first sequence of characters in a word.
:param str text: a word
:return: a list of possible words
:rtype: List[str]
"""
res = []
cur = self.root
for i, ch in enumerate(text):
node = cur.children.get(ch)
if not node:
break
if node.end:
res.append(text[: i + 1])
cur = node
return res
def __contains__(self, key: str) -> bool:
return key in self.words
def __iter__(self) -> Iterator[str]:
yield from self.words
def __len__(self) -> int:
return len(self.words)
[docs]
def dict_trie(dict_source: Union[str, Iterable[str], Trie]) -> Trie:
"""
Create a dictionary trie from a file or an iterable.
:param str|Iterable[str]|pythainlp.util.Trie dict_source: a path to
dictionary file or a list of words or a pythainlp.util.Trie object
:return: a trie object
:rtype: pythainlp.util.Trie
"""
trie = Trie([])
if isinstance(dict_source, str) and len(dict_source) > 0:
# dict_source is a path to dictionary text file
with open(dict_source, "r", encoding="utf8") as f:
_vocabs = f.read().splitlines()
trie = Trie(_vocabs)
elif isinstance(dict_source, Iterable) and not isinstance(
dict_source, str
):
# Note: Since Trie and str are both Iterable,
# so the Iterable check should be here, at the very end,
# because it has less specificality
trie = Trie(dict_source)
else:
raise TypeError(
"Type of dict_source must be pythainlp.util.Trie, "
"or Iterable[str], or non-empty str (path to source file)"
)
return trie