Source code for pythainlp.translate.th_fr

# SPDX-FileCopyrightText: 2016-2026 PyThaiNLP Project
# SPDX-FileType: SOURCE
# SPDX-License-Identifier: Apache-2.0
"""Thai-French Machine Translation

Trained by OPUS Corpus

Model is from Language Technology Research Group at the University of Helsinki

BLEU 20.4

- Huggingface https://huggingface.co/Helsinki-NLP/opus-mt-th-fr
"""

from __future__ import annotations

from typing import TYPE_CHECKING, Optional

if TYPE_CHECKING:
    import torch
    from transformers import AutoModelForSeq2SeqLM, AutoTokenizer


[docs] class ThFrTranslator: """Thai-French Machine Translation Trained by OPUS Corpus Model is from Language Technology Research Group at the University of Helsinki BLEU 20.4 - Huggingface https://huggingface.co/Helsinki-NLP/opus-mt-th-fr :param bool use_gpu : load model using GPU (Default is False) """ tokenizer_thfr: AutoTokenizer model_thfr: AutoModelForSeq2SeqLM translated: torch.Tensor
[docs] def __init__( self, use_gpu: bool = False, pretrained: str = "Helsinki-NLP/opus-mt-th-fr", ) -> None: from transformers import AutoModelForSeq2SeqLM, AutoTokenizer self.tokenizer_thfr: AutoTokenizer = AutoTokenizer.from_pretrained( pretrained ) self.model_thfr: AutoModelForSeq2SeqLM = ( AutoModelForSeq2SeqLM.from_pretrained(pretrained) ) if use_gpu: self.model_thfr = self.model_thfr.cuda()
[docs] def translate( self, text: str, exclude_words: Optional[list[str]] = None ) -> str: """Translate text from Thai to French :param str text: input text in source language :param list[str] exclude_words: words to exclude from translation (optional) :return: translated text in target language :rtype: str :Example: Translate text from Thai to French:: from pythainlp.translate.th_fr import ThFrTranslator thfr = ThFrTranslator() thfr.translate("ทดสอบระบบ") # output: "Test du système." Translate text from Thai to French with excluded words:: thfr.translate("ทดสอบระบบ", exclude_words=["ระบบ"]) # output: "Test du ระบบ." """ from pythainlp.translate.core import ( _prepare_text_with_exclusions, _restore_excluded_words, ) prepared_text, placeholder_map = _prepare_text_with_exclusions( text, exclude_words ) self.translated: torch.Tensor = self.model_thfr.generate( **self.tokenizer_thfr( prepared_text, return_tensors="pt", padding=True ) ) translated_text = [ self.tokenizer_thfr.decode(t, skip_special_tokens=True) for t in self.translated ][0] return _restore_excluded_words(translated_text, placeholder_map)