Source code for pythainlp.tokenize.longest

# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: 2016-2025 PyThaiNLP Project
# SPDX-FileType: SOURCE
# SPDX-License-Identifier: Apache-2.0
"""
Dictionary-based longest-matching Thai word segmentation. Implementation is based
on the codes from Patorn Utenpattanun.

:See Also:
    * `GitHub Repository \
       <https://github.com/patorn/thaitokenizer/blob/master/thaitokenizer/tokenizer.py>`_

"""
import re
from typing import Dict, List, Union

from pythainlp import thai_tonemarks
from pythainlp.tokenize import DEFAULT_WORD_DICT_TRIE
from pythainlp.util import Trie

_FRONT_DEP_CHAR = [
    "ะ",
    "ั",
    "า ",
    "ำ",
    "ิ",
    "ี",
    "ึ",
    "ื",
    "ุ",
    "ู",
    "ๅ",
    "็",
    "์",
    "ํ",
]
_REAR_DEP_CHAR = ["ั", "ื", "เ", "แ", "โ", "ใ", "ไ", "ํ"]
_TRAILING_CHAR = ["ๆ", "ฯ"]

_RE_NONTHAI = re.compile(r"[A-Za-z\d]*")

_KNOWN = True
_UNKNOWN = False


[docs] class LongestMatchTokenizer:
[docs] def __init__(self, trie: Trie): self.__trie = trie
@staticmethod def __search_nonthai(text: str) -> Union[None, str]: match = _RE_NONTHAI.search(text) if match.group(0): return match.group(0).lower() return None def __is_next_word_valid(self, text: str, begin_pos: int) -> bool: text = text[begin_pos:].strip() if not text: return True match = self.__search_nonthai(text) if match: return True for pos in range(len(text) + 1): if text[0:pos] in self.__trie: return True return False def __longest_matching(self, text: str, begin_pos: int) -> str: text = text[begin_pos:] match = self.__search_nonthai(text) if match: return match word = None word_valid = None for pos in range(len(text) + 1): w = text[0:pos] if w in self.__trie: word = w if self.__is_next_word_valid(text, pos): word_valid = w if word: if not word_valid: word_valid = word try: len_word_valid = len(word_valid) if text[len_word_valid] in _TRAILING_CHAR: return text[0 : len_word_valid + 1] else: return word_valid except BaseException: return word_valid else: return "" def __segment(self, text: str): begin_pos = 0 len_text = len(text) tokens = [] token_statuses = [] while begin_pos < len_text: match = self.__longest_matching(text, begin_pos) if not match: if ( begin_pos != 0 and not text[begin_pos].isspace() and ( text[begin_pos] in _FRONT_DEP_CHAR or text[begin_pos - 1] in _REAR_DEP_CHAR or text[begin_pos] in thai_tonemarks or (token_statuses and token_statuses[-1] == _UNKNOWN) ) ): tokens[-1] += text[begin_pos] token_statuses[-1] = _UNKNOWN else: tokens.append(text[begin_pos]) token_statuses.append(_UNKNOWN) begin_pos += 1 else: if begin_pos != 0 and text[begin_pos - 1] in _REAR_DEP_CHAR: tokens[-1] += match else: tokens.append(match) token_statuses.append(_KNOWN) begin_pos += len(match) # Group consecutive spaces into one token grouped_tokens = [] for token in tokens: if token.isspace() and grouped_tokens and grouped_tokens[-1].isspace(): grouped_tokens[-1] += token else: grouped_tokens.append(token) return grouped_tokens
[docs] def tokenize(self, text: str) -> List[str]: tokens = self.__segment(text) return tokens
_tokenizers: Dict[int, LongestMatchTokenizer] = {}
[docs] def segment(text: str, custom_dict: Trie = DEFAULT_WORD_DICT_TRIE) -> List[str]: """ Dictionary-based longest matching word segmentation. :param str text: text to be tokenized into words :param pythainlp.util.Trie custom_dict: dictionary for tokenization :return: list of words, tokenized from the text """ if not text or not isinstance(text, str): return [] if not custom_dict: custom_dict = DEFAULT_WORD_DICT_TRIE global _tokenizers custom_dict_ref_id = id(custom_dict) if custom_dict_ref_id not in _tokenizers: _tokenizers[custom_dict_ref_id] = LongestMatchTokenizer(custom_dict) return _tokenizers[custom_dict_ref_id].tokenize(text)