# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: 2016-2025 PyThaiNLP Project
# SPDX-FileType: SOURCE
# SPDX-License-Identifier: Apache-2.0
"""
Dictionary-based longest-matching Thai word segmentation. Implementation is based
on the codes from Patorn Utenpattanun.
:See Also:
* `GitHub Repository \
<https://github.com/patorn/thaitokenizer/blob/master/thaitokenizer/tokenizer.py>`_
"""
import re
from typing import Dict, List, Union
from pythainlp import thai_tonemarks
from pythainlp.tokenize import DEFAULT_WORD_DICT_TRIE
from pythainlp.util import Trie
_FRONT_DEP_CHAR = [
"ะ",
"ั",
"า ",
"ำ",
"ิ",
"ี",
"ึ",
"ื",
"ุ",
"ู",
"ๅ",
"็",
"์",
"ํ",
]
_REAR_DEP_CHAR = ["ั", "ื", "เ", "แ", "โ", "ใ", "ไ", "ํ"]
_TRAILING_CHAR = ["ๆ", "ฯ"]
_RE_NONTHAI = re.compile(r"[A-Za-z\d]*")
_KNOWN = True
_UNKNOWN = False
[docs]
class LongestMatchTokenizer:
[docs]
def __init__(self, trie: Trie):
self.__trie = trie
@staticmethod
def __search_nonthai(text: str) -> Union[None, str]:
match = _RE_NONTHAI.search(text)
if match.group(0):
return match.group(0).lower()
return None
def __is_next_word_valid(self, text: str, begin_pos: int) -> bool:
text = text[begin_pos:].strip()
if not text:
return True
match = self.__search_nonthai(text)
if match:
return True
for pos in range(len(text) + 1):
if text[0:pos] in self.__trie:
return True
return False
def __longest_matching(self, text: str, begin_pos: int) -> str:
text = text[begin_pos:]
match = self.__search_nonthai(text)
if match:
return match
word = None
word_valid = None
for pos in range(len(text) + 1):
w = text[0:pos]
if w in self.__trie:
word = w
if self.__is_next_word_valid(text, pos):
word_valid = w
if word:
if not word_valid:
word_valid = word
try:
len_word_valid = len(word_valid)
if text[len_word_valid] in _TRAILING_CHAR:
return text[0 : len_word_valid + 1]
else:
return word_valid
except BaseException:
return word_valid
else:
return ""
def __segment(self, text: str):
begin_pos = 0
len_text = len(text)
tokens = []
token_statuses = []
while begin_pos < len_text:
match = self.__longest_matching(text, begin_pos)
if not match:
if (
begin_pos != 0
and not text[begin_pos].isspace()
and (
text[begin_pos] in _FRONT_DEP_CHAR
or text[begin_pos - 1] in _REAR_DEP_CHAR
or text[begin_pos] in thai_tonemarks
or (token_statuses and token_statuses[-1] == _UNKNOWN)
)
):
tokens[-1] += text[begin_pos]
token_statuses[-1] = _UNKNOWN
else:
tokens.append(text[begin_pos])
token_statuses.append(_UNKNOWN)
begin_pos += 1
else:
if begin_pos != 0 and text[begin_pos - 1] in _REAR_DEP_CHAR:
tokens[-1] += match
else:
tokens.append(match)
token_statuses.append(_KNOWN)
begin_pos += len(match)
# Group consecutive spaces into one token
grouped_tokens = []
for token in tokens:
if token.isspace() and grouped_tokens and grouped_tokens[-1].isspace():
grouped_tokens[-1] += token
else:
grouped_tokens.append(token)
return grouped_tokens
[docs]
def tokenize(self, text: str) -> List[str]:
tokens = self.__segment(text)
return tokens
_tokenizers: Dict[int, LongestMatchTokenizer] = {}
[docs]
def segment(text: str, custom_dict: Trie = DEFAULT_WORD_DICT_TRIE) -> List[str]:
"""
Dictionary-based longest matching word segmentation.
:param str text: text to be tokenized into words
:param pythainlp.util.Trie custom_dict: dictionary for tokenization
:return: list of words, tokenized from the text
"""
if not text or not isinstance(text, str):
return []
if not custom_dict:
custom_dict = DEFAULT_WORD_DICT_TRIE
global _tokenizers
custom_dict_ref_id = id(custom_dict)
if custom_dict_ref_id not in _tokenizers:
_tokenizers[custom_dict_ref_id] = LongestMatchTokenizer(custom_dict)
return _tokenizers[custom_dict_ref_id].tokenize(text)