# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: 2016-2025 PyThaiNLP Project
# SPDX-FileType: SOURCE
# SPDX-License-Identifier: Apache-2.0
from typing import List, Tuple
[docs]
def pos_tag(
words: List[str], engine: str = "perceptron", corpus: str = "orchid"
) -> List[Tuple[str, str]]:
"""
Marks words with part-of-speech (POS) tags, such as 'NOUN' and 'VERB'.
:param list words: a list of tokenized words
:param str engine:
* *perceptron* - perceptron tagger (default)
* *unigram* - unigram tagger
* *wangchanberta* - wangchanberta model.
* *tltk* - TLTK: Thai Language Toolkit (support TNC corpora only.\
If you choose other corpora, they will be converted to TNC corpora.)
:param str corpus: the corpus that is used to create the language model for tagger
* *orchid* - `ORCHID \
<https://www.academia.edu/9127599/Thai_Treebank>`_ corpus, \
text from Thai academic articles (default)
* *orchid_ud* - ORCHID text, with tags mapped to Universal POS tags
* *blackboard* - `blackboard treebank <https://bitbucket.org/kaamanita/blackboard-treebank/src/master/>`_
* *blackboard_ud* - blackboard text, with tags mapped to Universal POS tag \
from `Universal Dependencies <https://universaldependencies.org/>`
* *pud* - `Parallel Universal Dependencies (PUD)\
<https://github.com/UniversalDependencies/UD_Thai-PUD>`_ \
treebanks, natively use Universal POS tags
* *tdtb* - `Thai Discourse Treebank \
<https://github.com/nlp-chula/thai-discourse-treebank/tree/main>`_ \
, natively use Universal POS tags
* *tnc* - Thai National Corpus (support tltk engine only)
* *tdtb* - `Thai Discourse Treebank <https://github.com/nlp-chula/thai-discourse-treebank>`_
* *tud* - `Thai Universal Dependency Treebank (TUD)\
<https://github.com/nlp-chula/TUD>`_ \
:return: a list of tuples (word, POS tag)
:rtype: list[tuple[str, str]]
:Example:
Tag words with corpus `orchid` (default)::
from pythainlp.tag import pos_tag
words = ['ฉัน','มี','ชีวิต','รอด','ใน','อาคาร','หลบภัย','ของ', \\
'นายก', 'เชอร์ชิล']
pos_tag(words)
# output:
# [('ฉัน', 'PPRS'), ('มี', 'VSTA'), ('ชีวิต', 'NCMN'), ('รอด', 'NCMN'),
# ('ใน', 'RPRE'), ('อาคาร', 'NCMN'), ('หลบภัย', 'NCMN'),
# ('ของ', 'RPRE'), ('นายก', 'NCMN'), ('เชอร์ชิล', 'NCMN')]
Tag words with corpus `orchid_ud`::
from pythainlp.tag import pos_tag
words = ['ฉัน','มี','ชีวิต','รอด','ใน','อาคาร','หลบภัย','ของ', \\
'นายก', 'เชอร์ชิล']
pos_tag(words, corpus='orchid_ud')
# output:
# [('ฉัน', 'PROPN'), ('มี', 'VERB'), ('ชีวิต', 'NOUN'),
# ('รอด', 'NOUN'), ('ใน', 'ADP'), ('อาคาร', 'NOUN'),
# ('หลบภัย', 'NOUN'), ('ของ', 'ADP'), ('นายก', 'NOUN'),
# ('เชอร์ชิล', 'NOUN')]
Tag words with corpus `pud`::
from pythainlp.tag import pos_tag
words = ['ฉัน','มี','ชีวิต','รอด','ใน','อาคาร','หลบภัย','ของ', \\
'นายก', 'เชอร์ชิล']
pos_tag(words, corpus='pud')
# [('ฉัน', 'PRON'), ('มี', 'VERB'), ('ชีวิต', 'NOUN'), ('รอด', 'VERB'),
# ('ใน', 'ADP'), ('อาคาร', 'NOUN'), ('หลบภัย', 'NOUN'),
# ('ของ', 'ADP'), ('นายก', 'NOUN'), ('เชอร์ชิล', 'PROPN')]
Tag words with different engines including *perceptron* and *unigram*::
from pythainlp.tag import pos_tag
words = ['เก้าอี้','มี','จำนวน','ขา', ' ', '=', '3']
pos_tag(words, engine='perceptron', corpus='orchid')
# output:
# [('เก้าอี้', 'NCMN'), ('มี', 'VSTA'), ('จำนวน', 'NCMN'),
# ('ขา', 'NCMN'), (' ', 'PUNC'),
# ('=', 'PUNC'), ('3', 'NCNM')]
pos_tag(words, engine='unigram', corpus='pud')
# output:
# [('เก้าอี้', None), ('มี', 'VERB'), ('จำนวน', 'NOUN'), ('ขา', None),
# ('<space>', None), ('<equal>', None), ('3', 'NUM')]
"""
if not words:
return []
_support_corpus = [
"blackboard",
"blackboard_ud",
"orchid",
"orchid_ud",
"pud",
"tdtb",
"tud",
]
if engine == "perceptron" and corpus in _support_corpus:
from pythainlp.tag.perceptron import tag as tag_
elif engine == "tltk":
from pythainlp.tag.tltk import pos_tag as tag_
corpus = "tnc"
elif engine == "unigram" and corpus in _support_corpus: # default
from pythainlp.tag.unigram import tag as tag_
else:
raise ValueError(
"pos_tag not support {0} engine or {1} corpus.".format(
engine, corpus
)
)
word_tags = tag_(words, corpus=corpus)
return word_tags
[docs]
def pos_tag_sents(
sentences: List[List[str]],
engine: str = "perceptron",
corpus: str = "orchid",
) -> List[List[Tuple[str, str]]]:
"""
Marks sentences with part-of-speech (POS) tags.
:param list sentences: a list of lists of tokenized words
:param str engine:
* *perceptron* - perceptron tagger (default)
* *unigram* - unigram tagger
* *tltk* - TLTK: Thai Language Toolkit (support TNC corpus only.\
If you choose other corpora, they will be converted to TNC corpora.)
:param str corpus: the corpus that is used to create the language model for tagger
* *orchid* - `ORCHID \
<https://www.academia.edu/9127599/Thai_Treebank>`_ corpus, \
text from Thai academic articles (default)
* *orchid_ud* - ORCHID text, with tags mapped to Universal POS tags
* *blackboard* - `blackboard treebank <https://bitbucket.org/kaamanita/blackboard-treebank/src/master/>`_
* *blackboard_ud* - blackboard text, with tags mapped to Universal POS tag \
from `Universal Dependencies <https://universaldependencies.org/>`
* *pud* - `Parallel Universal Dependencies (PUD)\
<https://github.com/UniversalDependencies/UD_Thai-PUD>`_ \
treebanks, natively use Universal POS tags
* *tnc* - Thai National Corpus (support tltk engine only)
:return: a list of lists of tuples (word, POS tag)
:rtype: list[list[tuple[str, str]]]
:Example:
Labels POS for two sentences::
from pythainlp.tag import pos_tag_sents
sentences = [['เก้าอี้','มี','3','ขา'], \\
['นก', 'บิน', 'กลับ', 'รัง']]
pos_tag_sents(sentences, corpus='pud)
# output:
# [[('เก้าอี้', 'PROPN'), ('มี', 'VERB'), ('3', 'NUM'),
# ('ขา', 'NOUN')], [('นก', 'NOUN'), ('บิน', 'VERB'),
# ('กลับ', 'VERB'), ('รัง', 'NOUN')]]
"""
if not sentences:
return []
return [pos_tag(sent, engine=engine, corpus=corpus) for sent in sentences]
def pos_tag_transformers(
sentence: str,
engine: str = "bert",
corpus: str = "blackboard",
) -> List[List[Tuple[str, str]]]:
"""
Marks sentences with part-of-speech (POS) tags.
:param str sentence: a list of lists of tokenized words
:param str engine:
* *bert* - BERT: Bidirectional Encoder Representations from Transformers (default)
* *wangchanberta* - fine-tuned version of airesearch/wangchanberta-base-att-spm-uncased on pud corpus (support PUD cotpus only)
* *phayathaibert* - fine-tuned version of clicknext/phayathaibert \
on blackboard corpus (support blackboard cotpus only)
* *mdeberta* - mDeBERTa: Multilingual Decoding-enhanced BERT with disentangled attention (support PUD corpus only)
:param str corpus: the corpus that is used to create the language model for tagger
* *blackboard* - `blackboard treebank (support bert engine only) <https://bitbucket.org/kaamanita/blackboard-treebank/src/master/>`_
* *pud* - `Parallel Universal Dependencies (PUD)\
<https://github.com/UniversalDependencies/UD_Thai-PUD>`_ \
treebanks, natively use Universal POS tags (support wangchanberta and mdeberta engine)
:return: a list of lists of tuples (word, POS tag)
:rtype: list[list[tuple[str, str]]]
:Example:
Labels POS for given sentence::
from pythainlp.tag import pos_tag_transformers
sentences = "แมวทำอะไรตอนห้าโมงเช้า"
pos_tag_transformers(sentences, engine="bert", corpus='blackboard')
# output:
# [[('แมว', 'NOUN'), ('ทําอะไร', 'VERB'), ('ตอนห้าโมงเช้า', 'NOUN')]]
"""
try:
from transformers import (
AutoModelForTokenClassification,
AutoTokenizer,
TokenClassificationPipeline,
)
except ImportError:
raise ImportError(
"Not found transformers! Please install transformers by pip install transformers"
)
if not sentence:
return []
_blackboard_support_engine = {
"bert": "lunarlist/pos_thai",
"phayathai": "lunarlist/pos_thai_phayathai",
}
_pud_support_engine = {
"wangchanberta": "Pavarissy/wangchanberta-ud-thai-pud-upos",
"mdeberta": "Pavarissy/mdeberta-v3-ud-thai-pud-upos",
}
if corpus == "blackboard" and engine in _blackboard_support_engine.keys():
base_model = _blackboard_support_engine.get(engine)
model = AutoModelForTokenClassification.from_pretrained(base_model)
tokenizer = AutoTokenizer.from_pretrained(base_model)
elif corpus == "pud" and engine in _pud_support_engine.keys():
base_model = _pud_support_engine.get(engine)
model = AutoModelForTokenClassification.from_pretrained(base_model)
tokenizer = AutoTokenizer.from_pretrained(base_model)
else:
raise ValueError(
"pos_tag_transformers not support {0} engine or {1} corpus.".format(
engine, corpus
)
)
pipeline = TokenClassificationPipeline(model=model,
tokenizer=tokenizer,
aggregation_strategy="simple",
)
outputs = pipeline(sentence)
word_tags = [[(tag["word"], tag["entity_group"]) for tag in outputs]]
return word_tags