# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: 2016-2024 PyThaiNLP Project
# SPDX-License-Identifier: Apache-2.0
"""
Thai2fit: Thai Wikipeida Language Model for Text Generation
Codes are from
https://github.com/PyThaiNLP/tutorials/blob/master/source/notebooks/text_generation.ipynb
"""
__all__ = ["gen_sentence"]
import random
import pickle
from typing import List, Union
import pandas as pd
# fastai
import fastai
from fastai.text import *
# pythainlp
from pythainlp.ulmfit import *
# get dummy data
imdb = untar_data(URLs.IMDB_SAMPLE)
dummy_df = pd.read_csv(imdb / "texts.csv")
# get vocab
thwiki = THWIKI_LSTM
thwiki_itos = pickle.load(open(thwiki["itos_fname"], "rb"))
thwiki_vocab = fastai.text.transform.Vocab(thwiki_itos)
# dummy databunch
tt = Tokenizer(
tok_func=ThaiTokenizer,
lang="th",
pre_rules=pre_rules_th,
post_rules=post_rules_th,
)
processor = [
TokenizeProcessor(tokenizer=tt, chunksize=10000, mark_fields=False),
NumericalizeProcessor(vocab=thwiki_vocab, max_vocab=60000, min_freq=3),
]
data_lm = (
TextList.from_df(dummy_df, imdb, cols=["text"], processor=processor)
.split_by_rand_pct(0.2)
.label_for_lm()
.databunch(bs=64)
)
data_lm.sanity_check()
config = {
"emb_sz": 400,
"n_hid": 1550,
"n_layers": 4,
"pad_token": 1,
"qrnn": False,
"tie_weights": True,
"out_bias": True,
"output_p": 0.25,
"hidden_p": 0.1,
"input_p": 0.2,
"embed_p": 0.02,
"weight_p": 0.15,
}
trn_args = {"drop_mult": 0.9, "clip": 0.12, "alpha": 2, "beta": 1}
learn = language_model_learner(
data_lm, AWD_LSTM, config=config, pretrained=False, **trn_args
)
# load pretrained models
learn.load_pretrained(**thwiki)
[docs]def gen_sentence(
start_seq: str = None,
N: int = 4,
prob: float = 0.001,
output_str: bool = True,
) -> Union[List[str], str]:
"""
Text generator using Thai2fit
:param str start_seq: word to begin sentence with
:param int N: number of words
:param bool output_str: output as string
:param bool duplicate: allow duplicate words in sentence
:return: list words or str words
:rtype: List[str], str
:Example:
::
from pythainlp.generate.thai2fit import gen_sentence
gen_sentence()
# output: 'แคทรียา อิงลิช (นักแสดง'
gen_sentence("แมว")
# output: 'แมว คุณหลวง '
"""
if start_seq is None:
start_seq = random.choice(list(thwiki_itos))
list_word = learn.predict(
start_seq, N, temperature=0.8, min_p=prob, sep="-*-"
).split("-*-")
if output_str:
return "".join(list_word)
return list_word