Source code for pythainlp.augment.word2vec.thai2fit

# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: 2016-2024 PyThaiNLP Project
# SPDX-License-Identifier: Apache-2.0
from typing import List, Tuple
from pythainlp.augment.word2vec.core import Word2VecAug
from pythainlp.corpus import get_corpus_path
from pythainlp.tokenize import THAI2FIT_TOKENIZER


[docs]class Thai2fitAug: """ Text Augment using word2vec from Thai2Fit Thai2Fit: `github.com/cstorm125/thai2fit <https://github.com/cstorm125/thai2fit>`_ """
[docs] def __init__(self): self.thai2fit_wv = get_corpus_path("thai2fit_wv") self.load_w2v()
[docs] def tokenizer(self, text: str) -> List[str]: """ :param str text: Thai text :rtype: List[str] """ return THAI2FIT_TOKENIZER.word_tokenize(text)
[docs] def load_w2v(self): """ Load Thai2Fit's word2vec model """ self.aug = Word2VecAug(self.thai2fit_wv, self.tokenizer, type="binary")
[docs] def augment( self, sentence: str, n_sent: int = 1, p: float = 0.7 ) -> List[Tuple[str]]: """ Text Augment using word2vec from Thai2Fit :param str sentence: Thai sentence :param int n_sent: number of sentence :param float p: probability of word :return: list of text augmented :rtype: List[Tuple[str]] :Example: :: from pythainlp.augment.word2vec import Thai2fitAug aug = Thai2fitAug() aug.augment("ผมเรียน", n_sent=2, p=0.5) # output: [('พวกเรา', 'เรียน'), ('ฉัน', 'เรียน')] """ return self.aug.augment(sentence, n_sent, p)