# -*- coding: utf-8 -*-
from pythainlp.augment.word2vec.core import Word2VecAug
from bpemb import BPEmb
from typing import List, Tuple
[docs]class BPEmbAug:
"""
Thai Text Augment using word2vec from BPEmb
BPEmb:
`github.com/bheinzerling/bpemb <https://github.com/bheinzerling/bpemb>`_
"""
[docs] def __init__(self, lang: str = "th", vs: int = 100000, dim: int = 300):
self.bpemb_temp = BPEmb(lang=lang, dim=dim, vs=vs)
self.model = self.bpemb_temp.emb
self.load_w2v()
[docs] def tokenizer(self, text: str) -> List[str]:
"""
:param str text: thai text
:rtype: List[str]
"""
return self.bpemb_temp.encode(text)
[docs] def load_w2v(self):
"""
Load BPEmb model
"""
self.aug = Word2VecAug(
self.model, tokenize=self.tokenizer, type="model"
)
[docs] def augment(
self, sentence: str, n_sent: int = 1, p: float = 0.7
) -> List[Tuple[str]]:
"""
Text Augment using word2vec from BPEmb
:param str sentence: thai sentence
:param int n_sent: number sentence
:param float p: Probability of word
:return: list of synonyms
:rtype: List[str]
:Example:
::
from pythainlp.augment.word2vec.bpemb_wv import BPEmbAug
aug = BPEmbAug()
aug.augment("ผมเรียน", n_sent=2, p=0.5)
# output: ['ผมสอน', 'ผมเข้าเรียน']
"""
self.sentence = sentence.replace(" ", "▁")
self.temp = self.aug.augment(self.sentence, n_sent, p=p)
self.temp_new = []
for i in self.temp:
self.t = ""
for j in i:
self.t += j.replace('▁', '')
self.temp_new.append(self.t)
return self.temp_new