# -*- coding: utf-8 -*-
from typing import List, Tuple
[docs]def pos_tag(
    words: List[str], engine: str = "perceptron", corpus: str = "orchid"
) -> List[Tuple[str, str]]:
    """
    Marks words with part-of-speech (POS) tags, such as 'NOUN' and 'VERB'.
    :param list words: a list of tokenized words
    :param str engine:
        * *perceptron* - perceptron tagger (default)
        * *unigram* - unigram tagger
        * *wangchanberta* - wangchanberta model (support lst20 corpus only \
            and it supports a string only. if you input a list of word, \
            it will convert list word to a string.
    :param str corpus:
        the corpus that used to create the language model for tagger
        * *lst20* - `LST20 <https://aiforthai.in.th/corpus.php>`_ corpus \
            by National Electronics and Computer Technology Center, Thailand
        * *lst20_ud* - LST20 text, with tags mapped to Universal POS tag \
            from `Universal Dependencies <https://universaldependencies.org/>`
        * *orchid* - `ORCHID \
            <https://www.academia.edu/9127599/Thai_Treebank>`_ corpus, \
            text from Thai academic articles (default)
        * *orchid_ud* - ORCHID text, with tags mapped to Universal POS tags
        * *pud* - `Parallel Universal Dependencies (PUD)\
            <https://github.com/UniversalDependencies/UD_Thai-PUD>`_ \
            treebanks, natively use Universal POS tags
    :return: a list of tuples (word, POS tag)
    :rtype: list[tuple[str, str]]
    :Example:
    Tag words with corpus `orchid` (default)::
        from pythainlp.tag import pos_tag
        words = ['ฉัน','มี','ชีวิต','รอด','ใน','อาคาร','หลบภัย','ของ', \\
            'นายก', 'เชอร์ชิล']
        pos_tag(words)
        # output:
        # [('ฉัน', 'PPRS'), ('มี', 'VSTA'), ('ชีวิต', 'NCMN'), ('รอด', 'NCMN'),
        #   ('ใน', 'RPRE'), ('อาคาร', 'NCMN'), ('หลบภัย', 'NCMN'),
        #   ('ของ', 'RPRE'), ('นายก', 'NCMN'), ('เชอร์ชิล', 'NCMN')]
    Tag words with corpus `orchid_ud`::
        from pythainlp.tag import pos_tag
        words = ['ฉัน','มี','ชีวิต','รอด','ใน','อาคาร','หลบภัย','ของ', \\
            'นายก', 'เชอร์ชิล']
        pos_tag(words, corpus='orchid_ud')
        # output:
        # [('ฉัน', 'PROPN'), ('มี', 'VERB'), ('ชีวิต', 'NOUN'),
        #   ('รอด', 'NOUN'), ('ใน', 'ADP'),  ('อาคาร', 'NOUN'),
        #   ('หลบภัย', 'NOUN'), ('ของ', 'ADP'), ('นายก', 'NOUN'),
        #   ('เชอร์ชิล', 'NOUN')]
    Tag words with corpus `pud`::
        from pythainlp.tag import pos_tag
        words = ['ฉัน','มี','ชีวิต','รอด','ใน','อาคาร','หลบภัย','ของ', \\
            'นายก', 'เชอร์ชิล']
        pos_tag(words, corpus='pud')
        # [('ฉัน', 'PRON'), ('มี', 'VERB'), ('ชีวิต', 'NOUN'), ('รอด', 'VERB'),
        #   ('ใน', 'ADP'), ('อาคาร', 'NOUN'), ('หลบภัย', 'NOUN'),
        #   ('ของ', 'ADP'), ('นายก', 'NOUN'), ('เชอร์ชิล', 'PROPN')]
    Tag words with different engines including *perceptron* and *unigram*::
        from pythainlp.tag import pos_tag
        words = ['เก้าอี้','มี','จำนวน','ขา', ' ', '=', '3']
        pos_tag(words, engine='perceptron', corpus='orchid')
        # output:
        # [('เก้าอี้', 'NCMN'), ('มี', 'VSTA'), ('จำนวน', 'NCMN'),
        #   ('ขา', 'NCMN'), (' ', 'PUNC'),
        #   ('=', 'PUNC'), ('3', 'NCNM')]
        pos_tag(words, engine='unigram', corpus='pud')
        # output:
        # [('เก้าอี้', None), ('มี', 'VERB'), ('จำนวน', 'NOUN'), ('ขา', None),
        #   ('<space>', None), ('<equal>', None), ('3', 'NUM')]
    """
    if not words:
        return []
    if engine == "perceptron":
        from pythainlp.tag.perceptron import tag as tag_
    elif engine == "wangchanberta" and corpus == "lst20":
        from pythainlp.wangchanberta.postag import pos_tag as tag_
        words = ''.join(words)
    else:  # default, use "unigram" ("old") engine
        from pythainlp.tag.unigram import tag as tag_
    word_tags = tag_(words, corpus=corpus)
    return word_tags 
def pos_tag_sents(
    sentences: List[List[str]],
    engine: str = "perceptron",
    corpus: str = "orchid",
) -> List[List[Tuple[str, str]]]:
    """
    Marks sentences with part-of-speech (POS) tags.
    :param list sentences: a list of lists of tokenized words
    :param str engine:
        * *perceptron* - perceptron tagger (default)
        * *unigram* - unigram tagger
    :param str corpus:
        the corpus that used to create the language model for tagger
        * *lst20* - `LST20 <https://aiforthai.in.th/corpus.php>`_ corpus \
            by National Electronics and Computer Technology Center, Thailand
        * *lst20_ud* - LST20 text, with tags mapped to Universal POS tags \
            from `Universal Dependencies <https://universaldependencies.org/>`
        * *orchid* - `ORCHID \
            <https://www.academia.edu/9127599/Thai_Treebank>`_ corpus, \
            text from Thai academic articles (default)
        * *orchid_ud* - ORCHID text, with tags mapped to Universal POS tags
        * *pud* - `Parallel Universal Dependencies (PUD)\
            <https://github.com/UniversalDependencies/UD_Thai-PUD>`_ \
            treebanks, natively use Universal POS tags
    :return: a list of lists of tuples (word, POS tag)
    :rtype: list[list[tuple[str, str]]]
    :Example:
    Labels POS for two sentences::
        from pythainlp.tag import pos_tag_sents
        sentences = [['เก้าอี้','มี','3','ขา'], \\
                            ['นก', 'บิน', 'กลับ', 'รัง']]
        pos_tag_sents(sentences, corpus='pud)
        # output:
        # [[('เก้าอี้', 'PROPN'), ('มี', 'VERB'), ('3', 'NUM'),
        #   ('ขา', 'NOUN')], [('นก', 'NOUN'), ('บิน', 'VERB'),
        #   ('กลับ', 'VERB'), ('รัง', 'NOUN')]]
    """
    if not sentences:
        return []
    return [pos_tag(sent, engine=engine, corpus=corpus) for sent in sentences]